
Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

CSE 390B, Autumn 2022
Building Academic Success Through Bottom-Up Computing

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Cornell Note-taking &
Building Memory

Cornell Note-taking Method, Storing Data, Representing and
Building Memory, Program Counter Overview

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Lecture Outline

❖ Cornell Note-taking Method
▪ System for Taking, Organizing, and Reviewing Notes

❖ Review of Sequential Logic and DFFs

❖ Storing Data: Bit
▪ Bit Overview and Implementation

❖ Representing and Building Memory
▪ Array Abstraction, Building From the Bit

❖ Program Counter (PC) Overview
▪ Control Flow of Computer Programs

2

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Recap: Bloom’s Taxonomy

3

Remembering

Understanding

Applying

Analyzing

Creating

Evaluating

Recalling facts and basic concepts

Explaining ideas or concepts

Using information in a new (or similar)
situation

Drawing connections among ideas

Justifying your decisions or position

Producing something new

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Cornell Note Taking Method

4

NotesQuestions

Summary

I. Main Topic
○ Sub point
○ definition
○ example **

II. Object-Oriented Programming
○ Encapsulates the data

and the operations for a
given data type

○ Provides abstractions -
you don’t need to know
how a car is implemented
in order to use it

○ Extensibility - easier to
add new data types

III. Functional Programming
○ Extensibility - easier to

add new operations

Compose a
question that
corresponds to
the notes you
took

In what ways is
object-oriented
programming
more extensible
than functional
programming?

Object-oriented programming and functional
programming are two types of programming
paradigms…

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Cornell Note Taking Method

5

NotesQuestions

Summary

I. Main Topic
○ Sub point
○ definition
○ example **

II. Object-Oriented Programming
○ Encapsulates the data

and the operations for a
given data type

○ Provides abstractions -
you don’t need to know
how a car is implemented
in order to use it

○ Extensibility - easier to
add new data types

III. Functional Programming
○ Extensibility - easier to

add new operations

Compose a
question that
corresponds to
the notes you
took

In what ways is
object-oriented
programming
more extensible
than functional
programming?

Object-oriented programming and functional
programming are two types of programming
paradigms…

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Applying the Cornell Note-Taking Method

❖ Try it during today’s technical lecture!

❖ Next week, we’ll provide you with an opportunity to
discuss your notes with your classmates

❖ You will also practice it with one of your other classes as
part of Project 4

6

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Lecture Outline

❖ Cornell Note-taking Method
▪ System for Taking, Organizing, and Reviewing Notes

❖ Review of Sequential Logic and DFFs

❖ Storing Data: Bit
▪ Bit Overview and Implementation

❖ Representing and Building Memory
▪ Array Abstraction, Building From the Bit

❖ Program Counter (PC) Overview
▪ Control Flow of Computer Programs

7

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Vote at https://pollev.com/cse390b

Describe the behavior of the
Autopilot Engaged (AE) output
between 1ms to 6ms.

8

CAR 1 1 1 1 1 1

PF 1 0 0 0 0 0

PAR 1 1 1 1 1 1

A 0 0 1 1 1 1

B 0 0 0 1 1 1

C 1 1 0 0 0 0

AE 1 1 1 0 1 1

0ms 1ms 2ms 3ms 4ms 5ms 6ms

Copilot Autopilot Request

Pilot Autopilot Request

Pilot Flying? Autopilot Engaged

!

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Autopilot Control Circuit Example

9

Copilot Autopilot Request

Pilot Autopilot Request

Pilot Flying? Autopilot Engaged

Critical Path

CAR 1 1 1 1 1 1

PF 1 0 0 0 0 0

PAR 1 1 1 1 1 1

A 0 0 1 1 1 1

B 0 0 0 1 1 1

C 1 1 0 0 0 0

AE 1 1 1 0 1 1

0ms 1ms 2ms 3ms 4ms 5ms 6ms

!

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Physical Timekeeping

❖ Hardware keeps track of time using an alternating signal
▪ Creates the idea of discrete time: state changes only occur in

discrete intervals, right when signal alternates

10

Physical
Time

Clock
Signal 0

1

Discrete Time Intervals

t=1 t=2 t=3 t=4t=0

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Adding a Clock: Clock Cycles

❖ Choose a clock cycle length slightly longer than the delay
length of the critical path

11

Clock
Signal 0

1

in
0

1

out
0

1

t=1 t=2 t=3 t=4t=0

> 3ms

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

The Data Flip-Flop Gate

❖ Simplest state-keeping component
▪ 1-bit input, 1-bit output
▪ Wired to the clock signal
▪ Always outputs its previous input: out(t) = in(t-1)

❖ Implementation: a gate that can flip between two stable
states (remembering 0 vs. remembering 1)
▪ Gates with this behavior are “Data Flip Flops” (DFFs)

12

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Data Flip-Flop (DFF) Behavior

13

Clock
Signal 0

1

in
0

1

out
0

1

t=1 t=2 t=3 t=4t=0

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Sequential Chips

14

Combinational
Logic

f

DFF

output

output(t) = f(state(t-1), input(t))

DFF

DFF

input

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

❖ DFF Specification:

out(t) = in(t-1)

D Flip-Flop: Time Series

15

in 0 0 1 1 0 1 0 ...

out 0 0 0 1 1 0 1 ...

time t=0 t=1 t=2 t=3 t=4 t=5 t=6 ...

Example: out(t=3) = in(t=2)

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

DFF Example 1: Specification

❖ Example specification:
out(t) = Xor(a(t-1), b(t-1))

❖ Takes two inputs, a and b, and outputs the Xor of them
▪ Note that out at time t is determined by a and b at time t-1
▪ We will need to use a DFF

❖ Exercise: Draw out the corresponding circuit diagram and
HDL implementation

16

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

❖ Example specification:
out(t) = Xor(a(t-1), b(t-1))

❖ Example: out(t=3) = Xor(a(t=2), b(t=2))

DFF Example 1: Time Series

17

a 0 0 1 1 1 0 0 ...

b 0 1 0 1 1 1 0 ...

out 0 0 1 1 0 0 1 ...

time t=0 t=1 t=2 t=3 t=4 t=5 t=6 ...

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

DFF Example 1: Circuit Diagram & HDL

❖ Example specification:
out(t) = Xor(a(t-1), b(t-1))

❖ Circuit diagram:

❖ HDL:

18

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

DFF Example 1: Circuit Diagram & HDL

❖ Example specification:
out(t) = Xor(a(t-1), b(t-1))

❖ Circuit diagram:

❖ HDL:

19

CHIP Example1 {
IN a, b;
OUT out;

PARTS:
Xor(a=a, b=b, out=xorout);
DFF(in=xorout, out=out);

}

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Lecture Outline

❖ Cornell Note-taking Method
▪ System for Taking, Organizing, and Reviewing Notes

❖ Review of Sequential Logic and DFFs

❖ Storing Data: Bit
▪ Bit Overview and Implementation

❖ Representing and Building Memory
▪ Array Abstraction, Building From the Bit

❖ Program Counter (PC) Overview
▪ Control Flow of Computer Programs

20

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Computer Overview

❖ CPU is the “brain” of our computer
▪ Does necessary computations (add, subtract, multiply, etc.)

❖ Memory is used to store values for later use
▪ Requires persistence across multiple computations
▪ Needs to change values at our discretion

21

COMPUTER

MEMORY

Data and
instructions

CPU

Program Counter
(which line of code
should I execute)

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Storing Data: Bit

❖ A Flip-Flop changes state every clock cycle

❖ We will build the abstraction of a “Bit” that only changes
when we instruct it to

22

Bit

load

in out

if load(t-1) out(t) = in(t-1)
else out(t) = out(t-1)

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Bit Behavior

23

0

1

in
0

1

out
0

1

t=1 t=2 t=3 t=4t=0

load

Bit

load

in outif load(t-1) out(t) = in(t-1)
else out(t) = out(t-1)

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Bit Behavior

24

0

1

in
0

1

out
0

1

t=1 t=2 t=3 t=4t=0

load

Bit

load

in outif load(t-1) out(t) = in(t-1)
else out(t) = out(t-1)

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Bit Time Series

❖ Bit Specification:

Example 1: load(t=0) == 1 so out(t=1) = in(t=0)

25

load 1 0 0 1 1 1 0 ...

in 1 0 0 0 1 0 1 ...

out 0 1 1 1 0 1 0 ...

time t=0 t=1 t=2 t=3 t=4 t=5 t=6 ...

if (load(t-1)): out(t) = in(t-1)

else: out(t) = out(t-1)

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Bit Time Series

❖ Bit Specification:

❖ Example 1: load(t=0) == 1, so out(t=1) = in(t=0)

❖ Example 2: load(t=2) == 0, so out(t=3) = out(t=2)

26

load 1 0 0 1 1 1 0 ...

in 1 0 0 0 1 0 1 ...

out 0 1 1 1 0 1 0 ...

time t=0 t=1 t=2 t=3 t=4 t=5 t=6 ...

if (load(t-1)): out(t) = in(t-1)

else: out(t) = out(t-1)

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Vote at https://pollev.com/cse390b

Which gates will we need to implement a Bit? Select all
that apply.

27

A. Mux
B. Xor
C. And
D. DFF
E. We’re lost…

if load(t-1) out(t) = in(t-1)
else out(t) = out(t-1)

Bit

load

in out

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Implementing a Bit

❖ Bit Specification:

❖ Exercise: fill in the connections to the gates to create a
circuit diagram of Bit

28

if load(t-1) out(t) = in(t-1)
else out(t) = out(t-1)

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Implementing a Bit

❖ Bit Specification:

❖ Exercise: fill in the connections to the gates to create a
circuit diagram of Bit

29

if load(t-1) out(t) = in(t-1)
else out(t) = out(t-1)

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Five-minute Break!

❖ Feel free to stand up, stretch, use the restroom, drink
some water, review your notes, or ask questions

❖ We’ll be back at:

30

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Lecture Outline

❖ Cornell Note-taking Method
▪ System for Taking, Organizing, and Reviewing Notes

❖ Review of Sequential Logic and DFFs

❖ Storing Data: Bit
▪ Bit Overview and Implementation

❖ Representing and Building Memory
▪ Array Abstraction, Building From the Bit

❖ Program Counter (PC) Overview
▪ Control Flow of Computer Programs

31

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Memory Representation

❖ Memory can be abstracted as one huge array

❖ Addresses are indices into different memory slots
▪ The width of an address is fixed for the system
▪ The nand2tetris project will use 16-bit addresses

❖ Each value in memory takes up a fixed width
▪ Not the same as address width
▪ The nand2tetris project uses 16-bit slots (values) in memory

32

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Memory Representation

❖ Can read and write to memory by specifying an address
▪ More details next week

❖ Example: x = memory[01...00]
▪ Reads the value in memory at address 01...00 and stores it in x

❖ Example: memory[01...00] = 7
▪ Writes the value 7 in the memory slot at address 01...00

33

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Building Memory: Register

❖ Bits store a single value (0 or 1)
▪ In memory, we need to store 16-bit values

❖ Registers are conceptually the same as a Bit
▪ Allows us to store and change 16-bit values
▪ Groups together 16 individual bits that share a load signal

// if (load(t-1)): out(t) = in(t-1)

// else: out(t) = out(t-1)

CHIP Register {

IN in[16], load;

OUT out[16];

...

}
34

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

RAM: Random Access Memory

❖ Abstraction of Computer Memory: just a giant array

❖ Goal: create hardware that can provide that abstraction

❖ Key attribute of arrays: “random access” lets us index into
them at any point

35

0
0000000

0
0000000

-1
1111111

25
0011001

124
1111100

0
0000000

9
0001001

-15
1110001

24
11000

25
11001

26
11010

27
11011

28
11100

29
11101

30
11110

31
11111

... ...

memory[26] = -1;

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Building Memory: RAM8 From Registers

❖ RAM interface:
▪ address: address used to specify

memory slot
▪ in: 16-bit input used to update

specified memory slot if load is 1
▪ load: if 1, then in should be written

to specified memory slot
▪ out: 16-bit output from the slot

specified by address

❖ RAM8 can be built from 8 registers
▪ address width is log2(8) = 3 bits

36

RAM8

...

0

1

n-1

load

in

16

address

k

out

16
Register

Register

Register

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Building Memory: RAM8 From Registers

❖ Step 1: Route in to every register
▪ We don’t want to update every

register, however
▪ Solution: choose which register to

enable with address

❖ Step 2: Choose which register to
use for the output

❖ When we think about making
choices in hardware, we want to
think about Mux and DMux

37

RAM8

...

0

1

n-1

load

in

address

16

k

out

16
Register

Register

Register

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Building Memory: The Rest of RAM

❖ After RAM8, can build larger RAM chips from a
combination of smaller RAM chips
▪ For example, RAM64 can be built using eight RAM8 chips

❖ Technique is similar to RAM8 but will have to use
different portions of the address

❖ The blocks section of the reading will be helpful
▪ For example, can think of each RAM8 as a block of RAM64

38

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Lecture Outline

❖ Cornell Note-taking Method
▪ System for Taking, Organizing, and Reviewing Notes

❖ Review of Sequential Logic and DFFs

❖ Storing Data: Bit
▪ Bit Overview and Implementation

❖ Representing and Building Memory
▪ Array Abstraction, Building From the Bit

❖ Program Counter (PC) Overview
▪ Control Flow of Computer Programs

39

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Program Counter (PC)

❖ Memory is used to store data as well as code

❖ Instructions and operations are stored at different
addresses in memory

❖ Program Counter in the CPU keeps track of which address
contains the instruction that should be executed next

40

COMPUTER

MEMORY

Data and
instructions

CPU

Program Counter
(which line of code
should I execute)

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Program Counter (PC)

❖ Keeps track of what instruction we are executing
▪ If the PC outputs 24, on the next clock cycle the computer runs

the instruction at address 24 in the code segment

❖ Program counter specification:
if (reset[t] == 1) out[t+1] = 0

else if (load[t] == 1) out[t+1] = in[t]

else if (inc[t] == 1) out[t+1] = out[t] + 1

else out[t+1] = out[t]

41

PC

load

in

16

out

16

inc reset

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Project 4 Overview

❖ Part I: Cornell Note Taking
▪ Practice taking detailed notes in another class
▪ Think critically about the technique

❖ Part II: Building Memory
▪ Memory & Sequential Logic: Build our first sequential chips, from

a 1-bit register to a 16K RAM module
▪ Program Counter: Build counter that tracks where we are in a

program, with support for several operations we’ll need later
▪ Note: Folder split for performance reasons only

❖ Part III: Project 4 Reflection

42

Lecture 7: Cornell Note-taking & Building Memory CSE 390B, Autumn 2022

Post-Lecture 7 Reminders

❖ Project 3 due tonight (10/20) at 11:59pm

❖ Project 4 (Cornell Note Taking & Building Memory)
released today, due next Thursday (10/27) at 11:59pm

❖ Course Staff Support
▪ Eric has office hours in CSE2 153 today after lecture
▪ Post your questions on the Ed discussion board

43

